COOL:Joell

JAVA OBJECTS FOR THE ENTERPRISE

REVIEWER’S GUIDE

STERLING
<~ SOFTWARE

COOL:Joe Reviewer’s Guide

JAVA OBJECTS FOR THE ENTERPRISE

INTRODUCTION

Stetling Software Application Development Group s a leading provider of software solutions
used by Fortune 1000 IS organizations to deliver technology solutions that address the needs of their
changing busimnesses. With a heritage of over 20 years of helping large companies deliver run-the-
business systems, Sterling Software today helps people get to e-business by extending and leveraging
their existing technology assets. Primarily a provider of application development software, Sterling
Software has developed a strong ecosystem of partners in the fields of consulting, services, content
provisioning, infrastructure and hardware.

COOL:Joe 1s Sterling Software’s newest technology and is an enterprise-scale development
environment that allows Java development teams to architect, create, deploy and manage reliable and
scalable distributed applications using Enterprise JavaBeans (E]Bs). The Reviewer’s Guide provides a
comprehensive guide to COOL:Joe. Industry analysts and media personnel can use this document to
quickly obtain key facts about Stetling Software and COOL:Joe. Reviewers of COOL:Joe wil
understand how the product works, its features and benefits, and its competitive landscape. The
Reviewer’s Guide 1s organized with the following sections:

A. The Fact Sheet summarizes key facts about Stetling Software and COOL:Joe and provides
contact information for sales, media and technical support, the target market for the
product, pricing and distribution, and the product’s system requirements.

B, An Executive Summary describes the force behind the development of the product -- the
trends driving companies today towards e-business and how COOL:Joe can support robust,
scaleable enterprise applications on the web.

C. The Overview provides an in-depth look at how the COOL:Joe product works by
addressing the major functional areas; Integrated Component Modeling, Advanced Wizards,
and Creating Business Logic. By using sample screen shots and dlustrations, the Overview
section guides the reader through a typical workflow allowing you to envision how the
product will be used. A typical workflow 1s described in the following steps:

1. Model business processes and relationships to build 5. The EJB Generation Wizard generates the code
a component architecture, which includes the to implement the component as an Enterprise
individual component specifications, needed to meet JavaBean.

new systems requirements. 6. Compile component classes and create an

2. Use the Specification to Implementation Wizard to oo iiable JAR file with the Build Wizard.

transform a component specification into Java classes. 7. The Deployment Wizard deploys the EJB JAR
3. Generate a set of persistence support classes to ' Y i

access a relational database with the Persistence
Generation Wizard. Use the DDL Generation Wizard)
to generate the database definition language. Or code necessary tf) test the component with a Java
reverse engineer an existing database. desktop application and/or HTML servlets.

4. Use the Editor to specify business logic and the 9. Test the EJB.

Class Diagram to model class structures. 10. EJB implemented successfully.

file to the Enterprise JavaBean application server.
8. Use the Test Harness Wizard to generate the

The Reviewer’s Guide continues with:

D. The Features and Benefits section highlights the major features and benefits in an

easy to read, one page format for readers to quickly ascertain the advantages of
COOLJoe.

E. The Competitive Landscape section provides a high level view of the current
competition in the Java development tools market. COOL:Joe’s major competitors
and competitive advantages are described.

F. Attachment A 1s an mtroduction to Enterprise JavaBeans, which provides a brief
historical perspective and the importance of E]Bs to distributed computing today.

G. Attachment B 1s a step by step guide to using the COOL:Joe evaluation edition,
which is downloadable from the Sterling Software web site. The guide shows you
how to create an EJB in 15 minutes and upon completion of the exercises, further
enhances the reviewer’s understanding of COOL:Joe.

The COOL:Joe Reviewer’s Guide is designed to provide an overview of the product and answer the
reviewer’s most commonly asked questions. If you have additional questions, simply use the fact
sheet to identify the appropriate contact information you need.

FACT SHEET

Description

Developer

Target Market

Distribution

Price

Technical
Support

System
Requirements

Media Contacts

COOL:Joe is an integrated component architecture, modeling and EJB development
environment that allows Java development teams to design, create, deploy and manage
enterprise-scale applications.

Sterling Software is a leading provider of software and services for the application
development, business intelligence, information management, storage management,
network management, VM systems management, and federal systems markets. The
company is one of the 20 largest independent software companies in the world.
Headquartered in Dallas, Steding Software has a worldwide installed base of more than
20,000 customer sites and 3,700 employees in 90 offices worldwide. For more
information on Sterling Software, visit the company’s Web site at www.sterling.com.

5800 Tennyson Parkway 1.877.5SW.COOL or 1.972.801.6000
Plano TX, 75024 1.972.801.6051 Fax

IT architects who need to design large-scale distributed e-business systems.
Development teams who want to create and deploy server-side components with
Enterprise JavaBeans technology. Java specialists that want to be insulated from the
underlying technology while taking advantage of E]Bs.

Direct from Sterling Software. COOL:Joe Evaluation copies are available to download
at: www.sterling.com/cooljoe

Pricing information will be made available at commercial release in January 2000.

Full technical support for COOL:Joe is provided world-wide. For additional details on
technical support visit www.sterling.com.

Pentium IT 300 MHz microprocessor or higher recommended ¢ CD-ROM drive ¢ 128
MB RAM minimum, 256 MB RAM recommended ®* SVGA monitor resolution or better
* 100 MB storage. Operating System: MS Windows NT 4.0 with Service Pack 4 with
Year 2000 updates. MS Network services ® Mouse ®* MS Word 97 or later. Relational
database such as MS SQL Server 7.0, DB2/2 5.0, or Oracle 8i /8.1.5 or higher with

JDBC drivers. Provided: Enterprise JavaBean specification classes 1.0 ® JavaServer Web
Development Kit 1.0 (JSWDK) ¢ ObjectStore 5.1 and ObjectStore Java Interface ¢ Java
2 SDK, Standard Edition (includes Java 2 Runtime environment) 1.2.2 ¢ Java 2 SDK
documentation 1.2.2 ¢ Java Naming and Directory Interface 1.1.2 (JNDI). Other: Web
browser ¢ Java Activator Plug-ins ® EJB Application Server.

Maysoon Al-Hasso Laura Sellers
Sterling Software Sterling Software
1.972.801.6601 1.972.801.6652
maysoon.al-hasso@sterling.com laura.sellers@stetling.com

EXECUTIVE SUMMARY

COOQOLJoe 1s an E]JB development environment seamlessly integrated with architecture design
and component modeling capabilities. Java development teams will now be able to architect, create,
deploy and manage reliable and scalable enterprise applications using EJBs. Using COOL:Joe’s built-
in smart features, developers can generate E]Bs automatically from component specifications, create,
test and debug business logic, and deploy to an application server. Developing distributed systems 1s
easy because COOL:Joe automatically generates the EJB infrastructure code and frees the developers
to concentrate on business logic. COOL:Joe makes developing server-side Java Objects for the
Enterprise faster than ever before.

TRENDS DRIVING E-BUSINESS

* The Internet is having a major impact on the way business is conducted around the world. New
businesses are being created and existing businesses are being transformed. E-commerce 1s
driving lower cost of distribution, tighter nventory control, increased productivity and improved
customer service. Organizations lack the knowledge, technology and skills to take advantage of
emerging web-based technologies.

* Organizations that succeed in taking advantage of web-based technologies will be rewarded with
efficient services meeting the needs of a growing customer base, the flexibility to move mto new
markets, and mnflated stock valuations based on their future potential to dominate their chosen
domains.

* Organizations that do not embrace web-based technologies will be sidelined as niche players, or
at worst, fail to survive at all.

* With the rapid pace of change of web-based technologies, organizations find it difficult to define
a long-term strategy for the backbone of their future distributed systems. Software architects
must select from a myriad of technical choices to adopt a set of core web-technologies that will
meet the organization’s immediate needs without resulting in wasted efforts in the future.

WHAT IS COOL:Joe?

COOQOL:Joe 1s used by Java development teams to architect, create and deploy scalable distributed
enterprise-scale applications using Enterprise JavaBeans (EJB). There are many alternative methods
of developing distributed systems using EJBs — COOL:Joe 1s different because it is a Java
development environment that is seamlessly integrated with architecture design and component
modeling capabilities. Building a component architecture that can be visualized provides a better
understanding of how components meet business requirements and creates a structured environment
in which they will exist.

COOQOL:Joe enables companies to deliver complex, distributed systems while taking advantage of
the latest Java technology without having to recruit armies of Java specialists. COOL:Joe allows EJB
developers to rapidly deliver a solution by abstracting problems by modeling the solution and while
being insulated from the underlying complexities of the target application environment, leverage
code generation capabilities. Using repository technologies, COOL:Joe supports team based
development of EJB components to deliver flexible, robust solutions that are portable across
platforms.

COOL:Joe OVERVIEW

INTEGRATED COMPONENT MODELING

COOL:jJoe Provides Component Modeling and Management

Before an EJB component can be built and deployed, it must be defined — what is often referred
to as creating a component specification. A component specification defines the component’s
behavior and its interfaces. For any application, a defined set of inter-dependent components can be
modeled in COOL:Joe, creating a component architecture for that application.

Step 1 Create 2 Component Architecture. In COOL:Joe, a component architecture diagram 1s
used to model the dependencies between components. A component architecture diagram shows
how various components are related and provides an overview of the structure of the software. The
diagram consists of component specifications, interfaces, and the usage relationships, or
dependencies, between these objects. In the diagram below, component specifications are
represented as rectangles, while interfaces are represented as lollipops (or nodes) extending from the
component specification in the diagram. Usage relationships are represented as a dashed-line arrow
between two boxes or as a dashed-line arrow between a box and a lollipop in the diagram.

*, diagrams.cde - Component Architecture Diagram - Component Architecture Diagrammer

Eilz Diagram Add Edit “iew Fomat Tool: Help

B & 7| =% % E WlE 848

s 2] alala|a| g 18|55 oo)

e C:coolsmodelzdiagrams. cde: =
3 Diagrams CDm.p.DnE.'nt
203 SystemPackage e Specification
; % Package :
Component 5pecifii | Interface 1
| - O

.3 Component Specifix
.2 Component Specific
Interface 1
Interface 2
Interface 3

Component
Specification 2

% Interface 2
Component

Specification 3 -

Interace 3 C

-
4| | 3

Far Help, press F1 SpstemPackage o

[l D

Individual component specifications can then be transformed automatically to component
implementations as E]Bs. COOL:Joe’s model-driven approach to development allows you to
visualize the solution, architect the solution and build a component architecture. COOL:Joe’s models
are based on an object-oriented repository, which allows the development team to make dynamic
changes to the component architecture as it evolves.

Project Window: Project Tree [lj[=]

Project Tree |

EI--- Sirstem Package

EIE PersorSpec
Elm Person Cornponent
[Person
EI IFPerson
g echo (Persomn)
EI =1 Person

'{1 Personld

i Id

alel
f g

The COOL:Joe Project Tree view
shows a model with a complete
component specification that
contains an interface type, a
specification type, and a component

specification object. The Person
component sieciﬁcation object

makes the S8 IPerson interface type
available as a2 means of accessing the
echo (Person) operation defined in

the IPerson interface type. The echo

- =]
(Person) operation returns a &
Person specification type with the

appropriate data in the
attributes; Personld, Id or Name.
The component specifications and

ADVANCED WIZARDS

types can be modeled with a Type
Diagram.

COOL:Joe Wizards Automate the Workflow for EJB Development

COOQOLJoe uses advanced wizards to automate the development effort from transforming a
component specification to creating the Java classes and EJB framework, from creating and editing
business logic to testing, debugging, building and deploying Enterprise JavaBeans. In fact, most of
the effort in creating an E]B component is accomplished using wizards. The workflow steps are:

1. Model business processes and relationships to build 5. The EJB Generation Wizard generates the code to

a component architecture, which includes the
individual component specifications, needed to meet
fnew systems requirements.

2. Use the Specification to Implementation Wizard to

transform a component specification into Java classes.

3. Generate a set of persistence support classes to
access a relational database with the Persistence
Generation Wizard. Use the DDL Generation Wizard
to generate the database definition language. Or
reverse engineer an existing database.

4. Use the Editor to specify business logic and Class
Diagram to model class structures.

implement the component as an Enterprise JavaBean.
6. Compile component classes and create an
executable JAR file with the Build Wizard.

7. The Deployment Wizard deploys the EJB JAR file
to the Enterprise JavaBean application server.

8. Use the Test Harness Wizard to generate all the
code necessary to test the component with a Java
desktop application and/or HTML servlets.

9. Test the E]B.

10. EJB implemented successfully.

The following describes the COOL:Joe workflow step by step and illustrates why COOL:Joe’s
advanced wizards’ make generating E]Bs faster and easier than ever before.

Spec Class

Component
Implementation

Start

COOL:Joe
Implementation
Wizard

COOL:Joe
Persistence
Wizard

COOL:Joe
EJB Wizard

Persistent
Generate

DDL

Install
Table
Definitions

Specification to Implementation

Step 2 Implement a Component specification.

The Specification to Implementation Wizard creates a
Java component implementation from a component
specification.

EJB Proxy

Session Bean

HTML/Servlet

Application

Database

COOL:Joe
Test Harness
Wizard

Write Business
Logic

Model Class
Structures

Build
Components

Deploy and Test

oo @ N

Component
Specification

The Specification to Implementation Wizard transtorms component specification objects to component
implementation objects. This wizard generates the initial component implementation class and interface
used to write business logic. Next, create or select the package where Java classes and interfaces will

reside. The component specification is transformed.

cation to Implementation Wizard - Welcome

The Specification to Implementation
Wizard creates a Java component
implementation from a component
specification.

The Jawva camponent implementation
includes classes, methods, attributes,
and interfaces.

The wizard allows you to either create a

new component implementation or
update an existing one.

Click Mext to continue.

SE|]

Firist Cancel Help

Project Window: Project Tree

Project Tree |

In - Component =18 System Packags
Specification = E8 Persorspec
.3 Ferson
[Person
Person

[—]E‘E CoH
EE‘E PO COTOALLYT
: E‘E PersoriTng

|

Cormponent

. D StandaloneComponent . prc
PersonZomporent

!2 PersonComponent

- IPerson
. - Person

Out - Classes that implement

the Component Specification £ EF sterling [

and Specification Types

coraponent

4 |

Defining Database Structure

COOL:Joe addresses persistence implementation, maintenance, and mapping problems found in
traditional implementations by providing an object layer between the business logic and the database.
The object layer insulates the developer from having to know the details of how to access a database,
and consists of generated persistent support classes and component framework classes. The
persistent support classes allow the developer to use class specific methods to locate and maintain
instances of persistent objects. The component framework classes interact with a Java Database
Connectivity (JDBC) driver to access a relational database.

The object layer also ensures that the business logic is separate from the persistence logic,
making the task of changing the underlying database easier.

Step 3 Generate Persistent Classes

The Persistence Wizard generates the Java code
necessaty to store one or more Java classes in a
relational database. These classes called persistent
supportt classes enable the Enterprise JavaBeans
to communicate with the database. The wizard
creates database table objects based on the
classes specified to be persistent. A database
table object 1s an abstract representation of a
database table in a COOL:Joe model.

Then, if needed, the DDL Generation Wizard can use the generated database table objects to
generate a DDL file. The DDL file contains SQL commands to create the physical database tables,
including the commands to create the primary key. Then, a database may be created and populated.

CREATING BUSINESS LOGIC

COOL:Joe Provides Developer-Friendly Java Editor

Step 4 Write the Business Logic

The COOL:Joe Editor will be used to create the
Java code that will implement the methods of the
component. The Editor lets the developer
quickly create and edit business logic. The Editor
includes a syntax parser, which makes coding
much faster.

By selecting the menu list (with a right mouse click) on the PersonComponent component
implementation icon in the Project Tree View, the Editor can be invoked. COOL:Joe’s Editor is
illustrated below.

| ot . vy sl iyt et et Przers oo mpon el jova [From Modal) =

B reesoncomaonent =|

PECigE Ol By RPN . PEL PINLER

inpors jama.io, Sializahlel

ispoct cas. riecling. comparant. [Caspooant;

LROEn O ST LLTRY . O RIS L GO Al GRTEK L] J
public clsy Facaonlfasponant isplessctcy [Fecscs, TlonasEle, Sarcislzzebls, ICoceponant

I

pELvEnE TEanAiEnt [CaRpoHsant oanest CONPINSNCOantENT = mall)

publio Svelny charge (Persan isPsrsos)
L
LETUEn ")

al I

e

pabilio i6c e&dd |dccing nessTakdd)
L

rerucn 07
pubilio Pepsol ger (inc iRPsrscaldi
L
CETULO TALLL)
o
| I 3|
Reagy ITEFE EL

10

COOL:Joe’s Smart Options

COOQOLJoe’s Editor has several smart options that provide the developer gains in productivity
while defining the business logic in Java. There are several Smart Options; some of the more
important ones are:

1) Smart Expansions - allow the developer to record code snippets that can be reused by
other developers. COOL:Joe delivers a pre-defined set of these and the developer can
modify and add new ones.

2) Smart Methods - display a list of available methods on an interface or class that is stored
either in the model or as a JAR file on the classpath.

3) Smart Macros - are Java classes that can be used mn the Editor to improve functionality.
COOQOLJoe mncorporates these macros for operations such as find, find and replace, goto,
etc. in the Editor today.

4) Smart Syntax - 1s a Java syntax checker that runs in the background as the developer 1s
working in the Editor. If a line of code has a syntax error, the line 1s highlighted and some
simple suggestions are given in a popup box.

UML CLASS DIAGRAM

COOLJoe’s UML Class Diagram allows you to view and modify the internal structure of an
application by visualizing the Java implementation classes and the relationships between classes and
interfaces. The Class Diagram has automatic layout placement, which provides for a clean, organized
view of the objects. Objects may be moved and the resulting diagram saved or automatic layout may
be mnvoked to reset to the default object positions.

Praymc Wndem ol PG Sy Cinas Dismprais b om ompey poisres M- &

= [Byiran P kg
i m wrorper (R ST AT A A
E E’ T WA L] TR R ek L s LT b |
s rorore DR A e L
T m SRR & pafC oo | K omrererd o
& i b DR | A
I E P ST DI R W A Rl
i) Pgrmon
.il-nldl:"h ST F] = ik B
'|'\-:I::n.'-\.l||pl.1.- - chamant| —

& I e e T

¢ o 3

i Poam mrpens ' '

4 | teritammc ~ |
T E.-'t'k:: P e ey L]
R T ¥ .
* w¥Ein raralis
rghmngsi ininfvnan
s ol | |
a CHTE A B B T
Ve N’ e 1,
L
snniim i 1
1 EAm rEC P

BRI DE] A e

i I ;Ill

11

MORE ADVANCED WIZARDS

EJB Generation

Step 5 Create the Enterprise JavaBean

The 1illustration shows how the Enterprise Java
Beans wizard is used to create the classes that
implement the Session Bean and the EJB proxy.
EBJ components are either derived from
predefined component specifications or
imported Java classes that are converted into an
EBJ implementation objects.

Out - ‘session’ package that
contains classes implementing
the Session Bean and EJB
Proxy

 EBweas ——

B,

Creates the Session
Bean class and the
EJB Proxy class

Project Window: Project Tree M=K

Project Tree |

Syatern Package
m PersonSpec
L‘—]E‘El ot
EF‘EI TFCOMIpAnY
EIE'E' personiap
E‘E'EI sesl0N
|'_E eproxy
Eﬁ remote
!3 PersonComponentSessionBean
PersonComponentSessionBean

------ D StandaloneComponent properties

In - Component Implementation

[]---!3 PersonCorponent
[]--- [Person

[]--- Person

[]--- PersonCorponent
EE.E sterling

Elﬁ component

12

The Specify Parameters panel for the EJB Generation Wizard is shown below. The fields in the
panel display the default EJB generation parameters for creating the Session Bean, the Home and
Remote Interfaces. Upon executing the wizard, the entire EJB framework is generated as well as all
the code necessary to implement a component as an Enterprise Java Bean.

¥3 EJB Generation Wizard - Specifty Parameters

The fields below display the default EJB generation parameters. You
can edit each field ifyou choose to change the default settings.

Session Bean Mame: |PersonComp0nentSessionElean
Home Interface Mame: |IPersonComponentEJElHome
Eemaote Interface Mame: |IPersonComponentEJElObject

Home Interface JMNDI Mame: |F'ersonCnmp0nent

Click Finish to generate EJB.

= Back

Finish Cancel Help

Building Components

In this step, two things will be accomplished:

1. One or more projects will be created. A Project 1s a collection of files, Java files, property files,
etc that will be compiled and included 1n a Jar file. A Jar file can be thought of as a load module and
will represent a part of the system being built.

2. Execute the COOL:Joe Build Wizard. The Build Wizard takes, as input, a Project and

produces a Jar file as output. The Build Wizard compiles all Java files in the Project and adds them
along with any other files in the Project to the resulting Jar file.

Step 6 Building Components
The Create Projects activity groups classes and 1. Group classes 2. Use Build Wizard to
uses the Build Wizard to create JAR files. JAR Into Projects create Jarfile

files contain the component framework classes
for runtime and the component classes. — \’_>

13

Project Window: Projec__. [H=] E3

Froject Tree |

Sarstern Package
D TestPanels
m PersonSpec
EIE'E com

=B ryrompany

Ea personitng
: Ea testharness
Ea sterling
EI'"E% java

= CF javax

EEI---E% sun

EIQ personirnpProject
personirap jar

| »

The Tree View above shows the project file using the hammer as the representative icon.

Deploying and Testing the EJB

Now, there remains the final steps, which are to deploy and test the EJB server component.
COOL:Joe provides a Deployment Wizard to assist the developer in preparing the EJB for testing
and production. Once the EJB 1s generated and built, the Deployment Wizard s run with a correctly
configured EJB application server environment. Doing this creates the EJB server container and
enables communications with the E]B server machine and database.

Step 7 Deploy the EJB

Project Window: Project... [lj[=] B4
FProject Tree |

E PersonSpec
Eﬁ o
"'EE java
g em

: ? PersonProject
? testharmessProject

14

COOL:Joe session beans can run in any EJB 1.0 compliant server/container. The COOL:Joe
Deployment Wizard automatically deploys to leading E]B application servers. In this example, we
will deploy to BEA’s WebLogic server environment.

The EJB Server Profile panel in the Deployment Wizard is shown below. When Next is chosen
n this panel, the Deployment Wizard contacts the WebLogic server, either locally or remotely across
the network and automatically deploys the new session bean.

Deployment Wizard - EJB Server Profile

Define an EJB server profile as the deployment target:

Profile Mame: lJCEI Wehlogic Server 1 ;I
EJB Server Type: |E|EAWebIUgi|: Application Server 4.0 ;I

EJB Server Host Mame: }wehlngic
EJB Server Port Mumber: I?IZIIZH

Initial Context Factary: }wehlngic.jndi.T3InitiaICuntE}ﬁFact0w

Provider URL: hEZIMehIDgiI::TDD'I

= Back Finish Cancel Help

Testing the EJB
Step 8 Generate the Test Harness

The Test Harness Wizard creates a driver for
testing your component. The wizard generates
the Java and/or HTML necessaty to test
individual methods implemented by the
component.

15

Project Window: Project Tree |_ (O] x|
Froject Tree |

|
In - Component Implementation = EF myrompary
EIF'E personimp
[]---Ea seS5100
TeSt Harness -+ | StandaloneComponent properties
9 — []---!3 PersonCormponent
leard []--- [Person
E]--- Person
E]--- PersonCoraponent
- []---Eatesthamess
[]---Ea sterling
Out - Package containing test i Egim
— - O javax |
application © Cem 3

The 1llustration above shows the component implementation as input and the package
containing the test application as the output of the wizard.

For the Test Harness; either generate a standalone Java program for each method or generate
the HTML servlet for each method or do both. The Test Harness Wizard creates the classes
necessary to build a simple user mnterface and provide connections to the component JAR file. The
JAR file 1s used to test components and 1s easily exported to 3 party web authoring environments
for production Ul development.

$i Test Harmess Wizard - Select Methods O] x|

Select the methods far which yau waould like to generate a test harness,

Method

Finish Cancel Help

= Batk |

16

LIrtmahl Aol gt Soskp TL e =

Tubory siarted oo Toe Boe LS L (pablic cloy FeremCospeeant isplessncs IFscoon; Clonsshls Secislizshle L enporans

privims CrEaiser Jloafran i SNt CoApTHnDIaErEEs S nullyp

[T Tty T £EF YD T (e DTG e O OfeponeTl
wPuimas D0l peasi)l nomestveban 0 ©ER DRI DR R On

The Test Harness Wizard Select Methods panel automatically displays the component’s methods
for which you can generate a test harness. You may choose one or more individually or all of them.
COOQOLJoe also provides an Interactive Debugger, integrated with the Editor, shown above to help
developers quickly identify problems in the code and make corrections, delivering quality solutions

much faster.

The end result is complete E]B generation and deployment from component specifications --- all
with COOL:Joe -- a visual, integrated development environment that enables developers to use the
latest Java standards and technology in a fast and reliable way.

17

COOL:Joe’s FEATURES AND BENEFITS

Feature

Benefit

Model-driven development so that all the work
done in the tool is captured at the model level.

Allows for flexibility and consistency.

Feature

Benefit

Automated code generation from the model as
much of the infrastructure code as possible.

Provides ability to generate EJBs from
component specifications, which frees
developers to concentrate on business logic.

Feature

Benefit

Enterprise-scale development tool that scales to
meet enterprise level application needs.

Provides confidence in building robust “run the
business” type applications.

Feature

Benefit

Based on established Component-based-
development concepts and techniques.

Promotes reuse of components and leverages
existing legacy assets, I'T skills and knowledge.

Feature

Benefit

Integrated visual component modeling and
management tools to architect and design

Lays foundation for understanding and building
complex systems that improves implementation

distributed systems and specify component success.
interfaces.
Feature Benefit

Use and share Java expertise built-in to the tool
via Smart Options.

Allows the use of the latest Java technology and
standards without extensive staff of Java experts.

Feature

Benefit

Advanced wizards automate majority of the
development effort.

This allows the development team to work more
efficiently and deliver applications faster.

Feature

Benefit

Repository-based, integrated development
environment.

Allows for teams to work simultaneously which
speeds up application delivery.

Feature

Benefit

(Class diagram that utilizes automatic layout
placement to model component types and
mnterfaces and class structures.

Provides visualization of complex relationships
in an easy to understand format.

18

THE COMPETITIVE LANDSCAPE

COOL:Joe COMPETITORS

Competitors in the E]JB development tools market are just emerging. Currently the competitive
landscape ranges from 1st generation Java Integrated Development Environment tools (IDEs) to
more capable products, which begin to address modeling and server side component development.
Based on our analysis of the current market we expect competition from the following vendors:

IBM/Visual Age for Java/Websphere

Forte for Java (part of Sun Microsystems)
Oracle/]Developer

Bluestone/Sapphire Web

Sybase/ Power] /Enterprise Application Studio
BEA /Visual Café

Inprise/JBuilder

The key advantage to COOL:Joe over competitive tools 1s the ability to insulate developers from
the underlying Java infrastructure and technology requirements. The above mentioned IDEs are
focused on providing tools that manage Java source code, binary code, components, version control
and configuration management. They are targeted at the experienced Java developer. Most
companies have limited access to experienced Java developers and must use the assets they have —
both in people and technology. So, the ability to insulate the developers from underlying Java
technology and having to understand how to build the infrastructure around EJBs makes COOL:Joe
an attractive tool i today’s market. COOL:Joe automates the development effort of E]Bs via
advanced wizards and smart options, which allow the developers to focus on creating business logic.

Another key advantage to COOL:Joe is the integration with component modeling and
management to provide the first imntegrated component architecture design and modeling
environment. No other tool automatically generates EJBs from component specifications and
provides round-trip engineering at the specification level. And the visualization capabilities to
architect the solutions are built n to COOL:Joe. The architecture, the model, the resulting
components and their implementations as EJBs are all contamned within a single tool. COOL:Joe
provides a single development environment; from modeling to testing to debugging and generating
code to implementation, providing a complete life cycle for E]B development.

COOQOLJoe greatly simplifies creating EJB applications by combining the most recent Java
technology advances with proven best practices for component-based development and deployment.
An in-depth repository of methods, processes and techniques advice and guidance are documented
mn the product. COOL:Joe enables organizations to take advantage of quickly emerging e-business
opportunities while leveraging legacy systems and preserving ongoing flexibility.

19

ATTACHMENT A

WHAT IS ENTERPRISE JAVABEANS?'

When Javall was first introduced, most of the IT industry focused on its graphical user interface
characteristics and the competitive advantage it offered in terms of distribution and platform
independence. Today, the focus has broadened considerably: Java has been recognized as an
excellent platform for creating enterprise solutions, specifically for developing distributed server-side
applications. This shift has much to do with Java’s emerging role as a universal language for
producing implementation-independent abstractions for common enterprise technologies.

Enterprise JavaBeans[] is the latest technology abstraction in the Java family, and perhaps the
most ambitious. Enterprise JavaBeans (EJB) provides an abstraction for component transaction
monitors (CTMs). Component transaction monitors represent the convergence of two technologies:
traditional transaction processing monitors, such as CICS, TUXEDQO, and Encina, and distributed
object services, such as CORBA (Common Object Request Broker Architecture), DCOM, and native
Java RMI. Combining the best of both technologies, component transaction monitors provide a
robust, component-based environment that simplifies distributed development while automatically
managing the most complex aspects of enterprise computing, such as object brokering, transaction
management, security, persistence, and concurrency.

Enterprise JavaBeans defines a server-side component model that allows business objects to be
developed and moved from one brand of CTM to another. A component (a bean) presents a simple
programming model that allows the developer to focus on its business purpose. An EJB server (a
CTM that conforms to the Enterprise JavaBeans specification) is responsible for making the
component a distributed object and for managing services such as transactions, persistence,
concurrency, and security. In addition to defining the bean’s business logic, the developer defines the
bean’s runtime attributes in a way that 1s similar to choosing the deploy properties of visual widgets.
The transactional, persistence and security behaviors of a component can be defined by choosing
from a list of properties. The end result is that Enterprise JavaBeans make developing distributed
component systems that are managed in a robust transactional environment much easter. For
developers and corporate IT shops that have struggled with the complexities of delivering mission-
critical, high-performance distributed systems using CORBA, DCOM or Java RMI, Enterprise
JavaBeans provides a far simpler and more productive platform on which to base development
efforts.

Enterprise JavaBeans has quickly become a de facto industry standard. Enterprise JavaBeans
provides a standard distributed component model that greatly simplifies the development process
and that allows beans that are developed and deployed on one vendor’s EJB server to be easiy
deployed on a different vendor’s E]B server.

! Excerpt from the Preface of Enterprise JavaBeans by Richard Monson-Haefel Copyright [1 1999 O'Reilly & Associates,
Inc. All rights reserved.

20

ATTACHMENT B

EJB PROGRAMMING IN 15 MINUTES
Using COOL:Joe™ for a fast-path to BB

www.sterling.com/ cooljoe

INTRODUCTION

Thank you for downloading the evaluation edition of Sterling Software’s COOL:Joe. The first
commercial release of COOL:Joe 1s now available.

COOQOLJoe 1s an enterprise-scale, EJB development environment that allows Java development
teams to architect, create, deploy and manage reliable and scalable enterprise applications using EJBs.
Using COOL:Joe’s built-in Smart features, developers can generate EJBs automatically from
component specifications, create, test and debug business logic, and deploy to an application server.
Developing distributed systems is effortless because COOL:Joe automatically generates the EJB
infrastructure code freeing the developers to concentrate on writing business logic.

To introduce you to COOL:Joe’s capabilities, we've outlined 5 steps for you to follow. In only a
few minutes, you will create and implement a component specification, add business logic, generate a
test harness, and build and test the component in a test application. By using COOL:Joe’s built-in
wizards, creating EJB components 1s fast and easy.

Quick Evaluation Script

Now it is time to create and implement your first COOL:Joe component! To start COOL:Joe,
go to the program group where you mnstalled the evaluation copy. Under the COOL:Joe Evaluation
ttem, select Component Implementation.

1. Create a component specification.

¢ Create 2 new COOL:Joe model called: evaljoe.jim. Click on the L Create a new model button,
type evajjoe in the Iile name field and click the Save button. This creates and opens the new
model.

* Right-click on 3 System Package and select " Create, then =3 Package. Name the new
package myEirstComponent and press the Enter key followed by the Escape key to exit the multiple
add mode.

* Right-click on =3 myFirstComponent and select ' Create, then & Component Specification.
Name the component specification myComponent and press the Enter key followed by the Escape
key to exit the multiple add mode.

* Right-click on = myFirstComponent and select Create, then Interface Type. Name
the interface type myluterface and press the Enter key followed by the Escape key to exit the
multiple add mode.

* Right-click on mylnterface and select ' Create, then N Operation. Name the operation
myOperation and press the Enter key followed by the Escape key to exit the multiple add mode.

21

* Right-click on N myOperation() and select . Properties. On the Operation Properties
dialog, under Result Type pick text and click OK to exit.

i
* Right-click on =@ rnyCornponent and select . Properties. On the Component Specification
Properties dialog, click the LEH Insert Row button beside the Offers interface types list. On the

Interface Type Selection dialog, expand] myFirstComponent, select - mylnterface, and
click the OK button 2 times to exit.

Congratulations, step 1 1s now complete. You have created a component specification
(myComponent) that offers one mterface (mylnterface) with one operation (myOperation). The
result of the operation is to return a text string that you will implement in step 3. You are now ready
to implement myComponent. Please continue with step 2.

2. Implement the component spec1ficat10n wizard.

mie .
* Right-click on B myComponent, select E-E Implement Specification. .., and click the Next>
button to display the Select Package dialog,

e Select the &3 System Package, click = New Package, select newPackage, type #yFirst.4App, and

press the Enter key to create = myFirstApp. Click the Finish button to run the wizard. Click

the Close button when the wizard completes.

Congratulations, step 2 1s now complete. You have run the Specification to Implementation
wizard to create a component implementation (EMyComponent), Java interface class
Mylnterface), and Java implementation class (Bd MyComponent). These objects can be found in

the B myFirstApp Java package. You are now ready to add your business logic. Please continue
with step 3.

3. Add business logic.
* Expand LEI E myFirstApp, right-click on =] MyComponent, and select I_H Edit..

* When the I_H Editor opens with the myFirstApp. MyComponent class displayed, use the

drop-down list at the top to locate the o myOperation() method. Select this method and
Editor will position you to the beginning of the method.

* Type the words Hello World between the quotes on the return * » statement. Example:
return “Hello World”;

* (lose the Class Editor and click the Yes button when the Save changes to MyComponent?
dialog 1s displayed. (Make sure the Save to model radio button is selected.)

Congratulations, step 3 1s now complete. You have edited the Java class (MyComponent) to
support the component implementation (MyComponent) and added the necessary business logic to
return a Java string containing “Hello World”. You are now ready to generate a test harness for your
component. The test harness will provide you with a user interface to send data to, and receive data
from, your component. Please continue with step 4.

22

4. Generate a Test Harness.

= 5
* Right-click on - MyComponent, select %8 Generate Test Harness. .., and click the Next>
button 4 times (taking all of the defaults) to display the Select Package For Java Classes
dialog.

e Select LB myFirstApp and click the Finish button to run the wizard. Click the Close button
when the wizard completes.

Congratulations, step 4 is now complete. You have run the Test Harness wizard to create several
HTML and Java files to support the testing of your component using a web browser or Java
application. You are now ready to build and test your component running in a test application.
Please continue with step 5.

5. Build and test the component in a test application.
* Right-click on = myFirstApp, select 8 Default Project. .., and click the OK button to
accept the default project GE: rnyFirstAppProi'e%clt.

* Right-click on GE:' myFirstAppProject, select B8 Build. .., and click the Finish button to
accept all defaults and run the wizard. Click the Close button when the wizard completes.

o Y

* Expand GE: myHiestAppProject, = myFirstApp.jar, and myFirstApp.
* Right-click on MyComponentFrame html (to test in web browser) or

= MyComponentFrame (to test as a Java application), and select B Test,

* After executing the MyOperation method the returned string result should be “Hello
World”.

Congratulations, step 5 1s now complete. You have completed the COOL:Joe evaluation script
and successfully tested your component in either a Java application or web browser.

Summary

Developing and delivering robust e-business solutions has never been easier. Your next step
may be to deploy your tested component as an EJB into an EJB application server. By using the EJB
Generation and Auto Deployment wizards you would repackage your component as an EJB session
bean and be ready to retest using your test harness in a matter of minutes. This task is accomplished
without writing any additional code.

To illustrate COOL:Joe’s visualization capabilities, we encourage you to look at the Type
Diagram and the Class Diagram. Component specifications, which mclude the interfaces, types and

. . . . |1
operations, can be modeled with a Type diagram. To view the diagram, right-click on
myComponent and select Type Diagram. After the component has been implemented via the
wizards in COOL:Joe, the resulting class structures can be visualized in a Class Diagram. To view the

diagram, right-click on - MyComponent and select Class Diagram. Both diagram styles utilize
automatic layout placement, which provides visualization of complex relationships i a format that is
always easy to understand.

23

For a more n-depth look at additional COOL:Joe features please refer to the tutorial provided as
a part of this evaluation. The tutorial file, EJoeGST.pdf, 1s located in the product’s ...\exe directory.

Features of the evaluation edition of COOL:Joe

Type Diagram
Class Diagram

Smart Options

Editor

Advanced Wizards

Interactive Debugger

Visualize the Specification Type interaction.
Visualize the Java classes and their interaction.
Provide ways to get the most out of your developer resources.
* Smart Expansions
* Smart Methods
* Smart Macros
Smart Syntax
Quickly create and edit business logic in Java, HTML, JSP, etc.

Automate the majority of the development effort so developers
can generate server side EJB components.

* Specification to Implementation Wizard
* EJB Generation Wizard

* Persistence Generation Wizard

e Test Harness Wizard

e Build Wizard

* Deployment Wizard
Set breakpoints and step through your Java business logic.

For more information on COOL:Joe please email us at cool.joe(@sterling.com

01999 Sterling Software, Inc. All rights reserved. COOL:Joe is
a trademark of Sterling Software. All other trademarks belong

to their respective owners.

24

